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On valence-bond method of Herndon and Hosoya [91*
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Clar structures recently used as basis-set to compute resonance energies [9]
are identified as maximal independent sets of benzenoid hydrocarbons
“colored” in a special way. Binomial properties of such objects are induced
for several catafusenes and perifusenes (Egs. 2-31). Novel polynomials, called
Clar polynomials, are given for perifusens in terms of units of catafusenes
which allow display and enumeration of the populations of their Ciar struc-
tures. The work is particularly pertinent to that of {8] and [9].
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1. Introduction

During the past decade applications of graph theory to polycyclic aromatic
hydrocarbons led to a revival of interest in resonance theory. Important develop-
ments in this direction include resonance theory of Herndon [1] and the conju-
gated circuits model introduced independently by Randié {2] and by Gomes [3].
The sextet polynomial discovered by Hosoya and Yamaguchi [4] provides a
systematic combinatorial enumeration of Kekulé structures of aromatic hydrocar-
bons which shows that resonance theories independently proposed are related
to each other. In another development, Clar’s numerous works on the spectral
properties of benzenoid systems [5], ripened into an amazingly simple formalism
which reproduced many properties of these molecules.

Clar’s notations [5, 6] when analyzed using the tools of graph theory became
now known as Clar sextet theory [6]. In their recent studies Hosoya et al. [7, 8]
(and Gutman [7]) defined the concept of generalized Clar formulas [6-8] and

* This paper is dedicated to Professor Eric Clar; the Doyen of aromatic chemistry.
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discovered a far reaching algebra behind such Clar patterns [7]. In quite a recent
development Herndon and Hosoya [9] adopted a novel valence-bond, VB, method
using Clar structures as basis set. The resulting resonance energies were found
to be almost identical with the “classical” values of Dewar and de Llano [10].
Such a result gave a strong impetus to further study of Clar’s theory. The present
paper deals with the combinatorial aspects of this latter theory. In particular
methods will be given for the display and enumeration of all Clar structures (or
Clar bases) of a given hydrocarbon. Although methods of finding the number of
Kekulé structure K, are numerous [11], the literature seems to be lacking methods
for finding the number of Clar structures [12]. Such methods would be particularly
desirable in cases of large hydrocarbons for which the recent VB methods of
Herndon and Hosoya [9] is most suitable. The present work is especially related
to [8] and [9].

2. Definitions and procedures

Work on the Clar theory led to several related terms such as the Clar formula
[6,12], the generalized Clar formula [12], the Clar pattern [71, the Clar graph
[13] and the Clar structure [9]. To avoid confusion the reader is referred to the
appropriate reference. For the sake of the present work, however, we need the
last two terms. Namely, a benzenoid system composed of hexagons {h,, h,, ..., h,}
is transformed into a Clar graph [13] by replacing its set of hexagons by a set
of vertices {v, v,,..., 0.} such that two vertices are connected only if the corre-
sponding hexagons are nonresonant. Every Clar structure is a generalized Clar
formula but not vice-versa. Thus, if in the latter every “empty”’ hexagon is adjacent
to at least one hexagon which contains a circle, it is called a Clar structure.
Further if the latter contains maximum number of circles, it is called a Clar
formula [6]. If this is the only Clar formula with a maximum number of circles
it is called a unique Clar formula [6, 12].

Since this paper deals with Clar structures (which are the objects dealt with in
[9]) we explicitly state the following three requirements that must be obeyed in
every Clar structure.

(a) Two circles must not be drawn in neighboring hexagons.

(b) The circles must be arranged in a way so that a Kekulé structure can be
written for the rest of the molecule.

(c) Every empty hexagon must be adjacent to at least one hexagon containing a
circle.

The above requirements plus the definition of the Clar graph leads to the following
important relation: Every Clar structure corresponds to a maximal set of indepen-
dent vertices of the Clar graph (or the reduced Clar graph [9, 13]). An independent
set of vertices V(r) is said to be a maximal [14] set if every vertex of the graph
not included in V(r) is adjacent to at least one of the r vertices of V(r). To avoid
confusion between Clar structures and other Clar objects we suggest the name
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“Clar bases” in agreement with the VB effective Hamiltonian bases set adopted
by Herndon and Hosoya [9].

Clar matrix: construction of Clar graph

As will become clear the combinatorial properties of Clar structures are most
easily approached by studying the Clar graph of the corresponding benzenoid
hydrocarbon. Unfortunately the required Clar graphs may be rather complicated.
(This is especially true for fat polyhexes [7] and other types of pericondensed
systems). A systematic (and non-error-prone) procedure to construct a Clar graph
is approached by computing its Clar matrix, defined as follows: For a benzenoid
system, B, composed of r hexagons define an r x r matrix, {(B), the elements of
which are given by

(1

{1 if h; is nonresonant with h;
ij =

0 otherwise,

where h; is a hexagon € B. The adjacency relation of the Clar graph (which will
be given the symbol ¢ (Benzenoid system) is then obtained from the elements
¢y The procedure may seem too tedious as to require a display of all Kekulé
structures of the benzenoid hydrocarbon. This is not so: consider, e.g. the system
C, 4 (we adopt almost similar nomenclature as in [8]. Using the formula given
in [8], its Kekulé content, K(C;,)=105". One of these Kekulé structures is
shown below:

It is immediate the {; =0 for the following values of (i, j): (1,7), (1, 8), (1, 10),
(1,11), (2, 5), (2, 8), (2, 10), (2, 11), (5,7) and (5, 8). Consideration of symmetry,
i.e. by = hy= hyo= hy; etc. generates other obvious vanishing terms in {(C; 4). Clar
“coloring” [15]: Clar structures might be represented by the corresponding Clar
graph colored (arbitrarily) in the following way: black vertices corresponding to
hexagons containing circles (i.e. aromatic sextets) and white vertices for empty
hexagons. The black and white vertices must be arranged such that no two black
vertices are adjacent and that every white vertex must be adjacent to at least one
black vertex. The number of such “Clar colorings” is the number of Clar structures
(=Clarbases) of the hydrocarbon, denoted by ¢ (benzenoid system). For chrysene,
e.g. we have the following facts:

¢ (chrysene) = P,; a path on 4 vertices,
K (chrysene) =8
{ (chrysene) = 3.

! The number of its Clar bases in only 29 (see Sect. 3.3)
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The three Clar structures correspond to the following three Clar colorings:
00— 0O0—0-—0; O—e—-0—e,; | ERORNQE

Clar polynomial

It is convenient for the enumeration of Clar structures (=Clar bases) to define
a Clar polynomial as follows. Let ¢(B) be the Clar graph of a benzenoid system
B. Let V(r) be the number of Clar structures in which there are r black vertices,
where r=1 and let m be the maximal value of r. Then a Clar polynomial
£(o(B); x), might be given by Eq. (2), viz.,

E(@(B); x) =172, V(r)x". (2)
Naturally, the Clar count, {(B), would be defined as:
{(B)=¢&(4(B); 1). (3)

Equation (3) must take into account super-rings [8, 9] (see Sect. 3.3).

3. Binomial properties of Clar structures

Four types of pericondensed systems are dealt with in this paper as well as a
catacondensed system in which the hexagons are annelated in a zig-zag manner.
(See Chart) Kekulé counts and sextet polynomials of these pericondensed systems
are studied elsewhere [8].
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3.1. Nonbranched cata-condensed all-benzenoid systems

If benzene rings are annelated in a zig-zag way an all-benzenoid hydrocarbon
results [15]. Lower members of this series are phenanthrene, chrysene, picene
and fulminene; the latter contains six hexagons. Chemical and spectral properties
of this system are studied and outlined in Clar’s book [5]. Certain pericondensed
systems contain this system as subunits and that is why it is included here (cf.,
C;, system). The main combinatorial properties of this system which will be
used later are the following: (other properties may be found elsewhere [16]).

3.1.1. The populations of Clar structures in periodic families of this system recur as
follows:

f(Aj)+£(Aj+1) = f(Aj+3), (4)

where {(A;) is the number of Clar structures (=Clar bases [9]) of A;, a non-
branched zig-zag type benzenoid hydrocarbon containing i rings. Equation (4)
is to be compared with the Fibonacci recursion [17], viz.,

Fj+P}‘+1=F}+2, (5)

where F; is the ith Fibonacci number when F, = F; = 1. For this system one recalls
that [18].

Fj = K(Aj) (6)
and whence
K(Aj)+K(Aj+l) = K(Aj+2) (7)

where K (A,) is the Kekulé structure count of A;. The real value of the VB method
of Herndon and Hosoya [9] is now already clear. By comparing Egs. (4) and
(7) it is obvious that populations of Kekulé structures grow “much faster” than
the corresponding populations of Clar structures. Because of Egs. (5) and (6),
Eq. (4) generates what might be called a “delayed” Fibonacci sequence. Chemical
interpretations of Fibonacci-like progressions are known [18, 19].

3.1.2. The number of terms, 7, in Clar polynomials. We let r be the number of
rings in A,, then 7, the number of terms in £(A,; x) = ¢(#(A,), x) is given by:

T=3+1 (8)
where j is the integral value satisfying the equation

r=3j+a (9)
where

_ {{0, 2,4} for even value of r

{-3,-1,1} for odd values of r. (10)

Here, the notation {k, I, m} means either k, I or m which leads to an integral
value of j. As an illustration: for A; we have 8§ =3j+a where a = {0, 2, 4}. Only
a =2 leads to an integral value of j(=2), and thus 7(Ag) =3 - 2+1=2. Actually
£(Ag; x) =4X>+5x*. Equation (8) will be used in the next property, viz.,
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3.1.3. Clar polynomials of A; types. The Clar graph of an A; is simply a path, P,
The following explicit expressions might be induced: (Throughout Eqgs. (11-14)
n=0,1,2,...)

E(P(Agn); x)= <2" * l)xz" + (23")x2"—1 + (2" - 1>x2n—2

1 5
2n—1+2
4 0o+ 2n—7+1
( 271 )x (1)
2n+2 2n+1
I e N A R G
1 3 5
2n—7+3
o +( ';le )x“‘*“ (12)
2n+2 2n+1 2
§(¢(A4n+1);x)=< : )x2n+l+< " )x2"+( n)xz"_1
0 2 4
2n—7+3
4+ .. +( nzT;r_l )x2n~—'r+2 (13)
2n+3 2n+2 2n+1
§((Aanray; X)=( nO )x2"+2+( n2 )x2"+1+( n4 )xz"
—r+
+ e +(2"2 Tl 4>x2"“*+3. (14)
r—

Evidently, Egs. (11-14) lead to analytic expressions for the number of Clar
structures when x = 1. These results will be used in system C;, (Sect. 3.3).

3.2. The pyrene system

We consider a pyrene system composed of n units, II,, (see charrt). Obviously,
1, contains 3n+1 rings. A very little effort shows that Clar polynomials are
simply given by:

£($(IL,); x)=x""+(3"—1)x"" (15)
and thus the Clar count is trivially:

¢(r,)=3" (16)
Equation (16) is to be compared with Gutman’s formula [20]

K(11,)=23" , | (17)

3.3. The C;, system

The Kekulé counts of this system are considered in details in the recent work of
Ohkami and Hosoya [8].
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3.3.1. Clar graph of Cs,; $(Cs,). The ¢ graph of this system is composed of
three rows of vertices derived from the skeletal graph [21] of the corresponding
hydrocarbon. The vertices of both the upper and lower rows form complete graph
[22] (i.e. every vertex is connected to all other vertices of the row). The vertices
of the middle row has the connectivity of a path in relation to one another. l.e.
is identical to ¢(A,;). Thus ¢(C;,) is shown below.

$(Cs.4)

We might “losely” express ¢{C; ) as ¢(K,UA, ., UK,) where K, is a complete
graph on n vertices.

3.3.2. Clar counts and Clar polynomials. Clar polynomials of the C;, system
might conveniently be constructed if divided into three parts, viz.,

(1) Black colors assigned to vertices chosen from all three rows. We shall call
this part of the polynomial £(V(123); x).

(2) Black colors assigned to vertices chosen from middle row only. This part of
the polynomial will be called £(V(2); x). We now recall that the vertices of the
middle row of a ¢(C;,) are attached to one another like the vertices of a path,
i.e. form among themselves an A, system. However out of the total of {(A,,)
only two ““colors” form maximal independent sets with the rest of the vertices viz.,

E(V(2); x)=2x (n odd) (18)
E(V(2); x)=x"*+x"*""  (neven) (19)
(3) Contribution from super-rings [8, 9] (super-sextets)
=£(S; x)=(n—-1)x
Thus for the B; , system we have

E(P(Bs,n); x) = £(Bs,n; x) = £(V(123); x) + £(V(2); x) + £(S; x) (21)

3.3.3. Computation of £(V(123); x). This is not a trivial term to compute. A
systematic method involves the construction of a “multiplication table or matrix”.
Thus we denote the vertices of the first row in ¢(Cs ,) by (Viy, Via, ..., Vi,) and
those of its third row by (Viy, Vi, ..., V3,). We define a color integral, say,
(Vy;| Vai), where j, k=[1, n], to give all Clar colorings which result when vertex
V,i; and vertex V3, are assigned black colors. Obviously, the resulting (Clar)
colorings will come from the “path moiety” (from second row) which is not
adjacent to Vj; or to Vi E.g., in Cy{Vy|Vay)={(Ag). (See Fig. 1). Thus the
contribution of (V};|V3,) to &(V(123); x) will simply be X2¢(é(Ag)). The factor
of x* comes from assigning black colors to V;, and to Vi,. Thus we realize this
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Fig. 1. All five Clar colors of Cj; resulting
when black colors are assigned to V), and
V,: computation of {V;,|V;,). Only skeletal
b graphs are shown. The total number of colors
of this perifusene is 164 =the number of its
Clar structures (see Appendix 1 and Table 1)

part of the Clar polynomial to be function of Clar polynomials of zig-zag
polyacenes. In general one might write:

<V1j|V3k>=x2§(<vlj|v3k>,; x). (22)

Where the primed “bra-ket” indicates that part of the path {which may be
disconnected) not connected with the subgraph {V,;UV;,}. Because of the par-
ticular topology of this system all (Vi;|V,)’s are paths. (These might be called
here, “complementary” paths). Thus we may write

E§V23);x)=x" T E(Vy|Var), x);
hkeCs (23)
J, k=[1,n].
where the summation is taken over all j and k for both j=k and j<k. In the
appendix the multiplication table of a lower member of C; , is given.

Table 1 lists Clar polynomials of a few C,;, members in the units of zig-zag
polyacenes. Polynomials of the latter are listed in the appendix.

3.4. The B;, system

3.4.1. Clar graph of Bs,; $(B;,). The skeletal graph [21}] of B; , is composed of
three rows of vertices. If we keep the arrangement of hexagons of a B; ,, as shown
in chart, the three rows of vertices of its skeletal graph are numbered from left



Combinatorial Clar sextet theory 61

Table 1. Clar polynomials of the first lower members of C; ,, type in the units of the zig-zag polyacene
polynomials [23]. Throughout the following A, = £(A,; x), Appendix 2; C, ; = £(C; ;; x). Parts of
the polynomials in parentheses are values of £(V(2); x) while parts in braces represent contributions
from super-rings; £(S, x), see Eq. (21)

C;, (coronene)
22X 2A, (X + X H{X} L(Cap) =T

C3,3

2X%+4X2 A +2X2 A+ XPA A+ (X)) +{2XY; ((Cyp) =15

C3,4

6X2A +4X2A,+2X A5+ 2X2A A+ 2X A A+ (XP+ XD +{3X}; L(Cs ) =29
C3,5

6X2A,+4X2A;+2X2A,+6X2A A +4XPA A, +2XPA A,
+ X2A,A,A+(2X3) +H{4X ) £(Cs 5) =54

C3,6

6X2A,+4X2A,+2X A+ 12X2AA,H4XPA A +2X A A,
+2X2A, A A, +2X2A,A,+2X2A,A, + (X + X)) +{5X);
{(Cs6)=95

C3,7

6X2A,+4X2A+2X2Ag+ 12X A A, +4X A A +2X2A A
+6X2A,A,+4X2A,A;+2X2A,A,+6X2A A A+ X2A A+ (22X +{6X);
{(Cy ) =164

to right as follows Vi, Vio, ..., Vi, Var, Vas, ooty Voo Vay, Vi, ..., Vi, To form
the ¢ graph every vertex in each row is attached to all other vertices in the same
row so that every row becomes a complete graph. In addition every vertex in the
second row is connected to all other vertices to its left. This means that v,, is
adjacent to all vertices in ¢(B;,), i.e. {v5,} ={} (=the empty set), where, as
before, {V}} is, in general, the set of vertices not connected with V, Similarly
{Vinoib={Vi,UV;,}. We can write analogous equations such as {V},_,}=
{Vi, UV, .-, UV3,UV; ,,_,} and so on.

3.4.2. Clar polynomials of B ,. In this case all Clar colorings except one involve
black vertices chosen from all three rows. Because V,, is attached to all other
vertices, a black V,, leaves the rest of the vertices white. There is no super-ring
[8,9] correction. Using the technique of multiplication table explained in the
previous case one can express the required Clar polynomial as follows

'f((;b(BS,n); x) = f(BS,n; x)

Jj=

=x2[ S Q-+ Vel x)] +x, (24)

where £(L,; x) = Clar polynomial of a linear acene containing k hexagons (=kx)
and £(Lg; x)=1. The factor of x comes from the maximal independent set
containing a black V,,. In the appendix a multiplication table is given for Bs.
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3.5. The parallelogram system P, ,,

We consider a parallelogram of mn hexagons arranged in n rows and m columns.
This is identical to Ohkami-Hosoya [8] P,,, (Actually, if the latter is reflected
by a mirror at the bottom our system results: We prefer to call it P, ,, in keeping
with the matrix notation of listing the number of rows followed by the number
of columns).

3.5.1. The Clar graph of P, ,,,, $(P, »). This is a rather involved graph. To illustrate
the pattern of this family we consider ¢(P; ;) shown below.

—t

¢ (P;3)

Higher members generate much more complicated relations. A convenient method
to envisage the structures of these graphs is to list what is called here “complement
subgraphs™. Thus {v}} is such a subgraph of vertex vy It is defined to be the
subgraph of vertices not adjacent (i.e., not connected) with v;. For ¢(P;;). We
have the following relations:

n 3
{vu}= i g =Py,

32 33
Similarly;

023

Viap= =P,
{Via} &33 21
{Val= 8—'(3)3 =Py

{Vish={Va}={2}.
Analogously for ¢(P;,) one might write:

{Vil} = P2,3; {Viz} = Pz,z; {Vis} = P2,1;
{Vyt= P1,3; {Vat={Vil}= {2}
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3.5.2. Clar counts of P, ,,. With some effort one can induce the following property
of the number of clar structures of a P,,, in terms of smaller (complement)
subgraphs of the vertices of the first row and those of the first column of ¢(P, )

g(Pn,m) = {(Pn—l,m—l) U{(Pn—l,m—Z) U o U
X (P 1) UL(D) U{(P,_ym)U
g(Pn—s,m—l) u--- Ug(Pl,m—l) UZ(Q)- (25)

where {() = 1. Evidently P, ; = P;; = L; = a linear acene on j hexagons. Of course
{(P)=k

3.5.3. Recursive relations of Clar polynomials. The general recursion is given by
E(D(Pym); x)=
m—1
f nm9x) 2x+x|:z g(Pn 1:,x)+2 g( jhm— l’x)] (26)

Equation (26) is a result of property (25).

Explicit expressions of some of the lower members are given below.

(P2 =(T)x 1)

£($(Prn); x) = )x +2x (28)

E(d(Psm); x)

¢
(5

E(¢(Pym); X) ('") 4 ()(m 1)x3+3mx2+2x (30)
¢

)x +3(m—1)x*+2x (29)

4 2

) ( )( ;1)x4+2(m+2)(m—2)x3+

+3(m+1)x*+2x. 31

There are no super-rings [8, 9] in this system. Such expressions are to be compared
with those of Ohkami and Hosoya [8] for the corresponding Kekulé counts.

§(¢(P5 m) x)

The above results (Egs. 4-31) as well as the method of “multiplication table”
are certainly useful for the enumeration and display (respectively) of Clar
structures. This is of value from several aspects, viz.

(1) The work of Herndon and Hosoya [9]: Clar structures form the bases of their
effective VB Hamiltonian.

(2) The work of Ohkami and Hosoya [8]: Clar polynomials are to be compared
with sextet polynomials, i.e., {(B) with K(B).

(3) The work of Aida and Hosoya [21]: Clar structures may provide a novel
VB-benzene character which may be of value in the analysis of mode of distribu-
tion of pi-electrons in the individual hexagons of a polycyclic aromatic hydrocar-
bon. Our work is in progress in this direction.
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Appendix 1

Multiplication table of C; ;: computation of ¢(C, ;( V(123); x). Table (matrix) elements are in units
of ¢(Ay; x)= Ay

Vi Via Vis Via Vis Vis Vis
Vi, Ag As A, A A, Ay A Ay A,
Via AAg AjA, AlA,; AAA, AA A, AA,
Vs AA, A2A3 AA, AA A, AA,
Vs A3A; AA, A A, A;A,
Vis ALA, AA, A,
Vie AsA, As
\ As

When {(A,)’s are used (from Appendix 2) the above table yields 156 maximal independent sets. The
total number of {(C; ;) =156+2+6=164 (cf. Eq. 21).

Appendix 2

Clar polynomials of the lower members of the zig-zag polyacenes. Throughout, the symbol A, will
be used to indicate {(A,; x).

A=X A =X5+15X5+5Xx4

A,=2X AL,=T7X%+20X°+X*

A, =X+ X Ay =X"+21X5+15X°
A,=3X2 A=8X"+35X°+6X°
As=X*+3X2 As=X3428X7+35X°+ X°
Ag=4X3+X? As=9X*+56X"+21X5

A, =X*+6X3 A, =X+36X3+70X7+7X5
Ag=5X°+4X3 A =10X°+84X5+56 X7+ X¢
Ay=X+10X*+ X3 A=X"4+45X°+126X5+28X7
Ap=6X°+10X* Ay =11X"+120X°+126X5+8X"
Appendix 3

Multiplication table of B;¢
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11 12 13 14 15 16
31 1%} %] 1%} 1%} 1%} 5]
32 L L L L L
33 L, L I, L,
34 L, I, L
53 L, L,
36 L,

: the empty set

L,:

Clar polynomial of a linear polyacene containing k hexagons
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