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Clar structures recently used as basis-set to compute resonance energies [9] 
are identified as maximal independent sets of benzenoid hydrocarbons 
"colored" in a special way. Binomial properties of such objects are induced 
for several catafusenes and perifusenes (Eqs. 2-31). Novel polynomials, called 
Clar polynomials, are given for perifusens in terms of units of catafusenes 
which allow display and enumeration of the populations of their Clar struc- 
tures. The work is particularly pertinent to that of [8] and [9]. 
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I. Introduction 

During the past decade applications of graph theory to polycyclic aromatic 
hydrocarbons led to a revival of interest in resonance theory. Important develop- 
ments in this direction include resonance theory of  Herndon [1] and the conju- 
gated circuits model introduced independently by Randi6 [2] and by Gomes [3]. 
The sextet polynomial discovered by Hosoya and Yamaguchi [4] provides a 
systematic combinatorial enumeration of Kekul6 structures of aromatic hydrocar- 
bons which shows that resonance theories independently proposed are related 
to each other. In another development, Clar's numerous works on the spectral 
properties of benzenoid systems [5], ripened into an amazingly simple formalism 
which reproduced many properties of these molecules. 

Clar's notations [5, 6] when analyzed using the tools of graph theory became 
now known as Clar sextet theory [6]. In their recent studies Hosoya et al. [7, 8] 
(and Gutman [7]) defined the concept of generalized Clar formulas [6-8] and 

* This paper is dedicated to Professor Eric Clar; the Doyen of aromatic chemistry. 
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discovered a far reaching algebra behind such Clar patterns [7]. In quite a recent 
development Herndon and Hosoya [9] adopted a novel valence-bond, VB, method 
using Clar structures as basis set. The resulting resonance energies were found 
to be almost identical with the "classical" values of Dewar and de Llano [10]. 
Such a result gave a strong impetus to further study of Clar's theory. The present 
paper deals with the combinatorial aspects of  this latter theory. In particular 
methods will be given for the display and enumeration of all Clar structures (or 
Clar bases) of a given hydrocarbon. Although methods of  finding the number of 
Kekul6 structure K, are numerous [ 11 ], the literature seems to be lacking methods 
for finding the number of  Clar structures [ 12]. Such methods would be particularly 
desirable in cases of  large hydrocarbons for which the recent VB methods of  
Herndon and Hosoya [9] is most suitable. The present work is especially related 
to [8] and [9]. 

2. Definitions and procedures 

Work on the Clar theory led to several related terms such as the Clar formula 
[6, 12], the generalized Clar formula [12], the Clar pattern [7], the Clar graph 
[13] and the Clar structure [9]. To avoid confusion the reader is referred to the 
appropriate reference. For the sake of the present work, however, we need the 
last two terms. Namely, a benzenoid system composed of  hexagons {hi, h 2 , . . . ,  hr} 
is transformed into a Clar graph [13] by replacing its set of hexagons by a set 
of vertices {vl, v2 , . . . ,  Vr} such that two vertices are connected only if the corre- 
sponding hexagons are nonresonant. Every Clar structure is a generalized Clar 
formula but not vice-versa. Thus, if in the latter every "empty"  hexagon is adjacent 
to at least one hexagon which contains a circle, it is called a Clar structure. 
Further if the latter contains maximum number of circles, it is called a Clar 
formula [6]. If  this is the only Clar formula with a maximum number of circles 
it is called a unique Clar formula [6, 12]. 

Since this paper deals with Clar structures (which are the objects dealt with in 
[9]) we explicitly state the following three requirements that must be obeyed in 
every Clar structure. 

(a) Two circles must not be drawn in neighboring hexagons. 

(b) The circles must be arranged in a way so that a Kekul6 structure can be 
written for the rest of the molecule. 

(c) Every empty hexagon must be adjacent to at least one hexagon containing a 
circle. 

The above requirements plus the definition of  the Clar graph leads to the following 
important relation: Every Clar structure corresponds to a maximal set of indepen- 
dent vertices of the Clar graph (or the reduced Clar graph [9, 13]). An independent 
set of vertices V(r) is said to be a maximal [14] set if every vertex of  the graph 
not included in V(r) is adjacent to at least one of the r vertices of  V(r). To avoid 
confusion between Clar structures and other Clar objects we suggest the name 
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"Clar bases" in agreement with the VB effective Hamiltonian bases set adopted 
by Herndon and Hosoya [9]. 

Clar matrix: construction of  Clar graph 

As will become clear the combinatorial properties of Clar structures are most 
easily approached by studying the Clar graph of the corresponding benzenoid 
hydrocarbon. Unfortunately the required Clar graphs may be rather complicated. 
(This is especially true for fat polyhexes [7] and other types of pericondensed 
systems). A systematic (and non-error-prone) procedure to construct a Clar graph 
is approached by computing its Clar matrix, defined as follows: For a benzenoid 
system, B, composed of r hexagons define an r x r matrix, ~(B), the elements of 
which are given by 

{10 if hi is nonresonant with hj (1) 
~u = otherwise, 

where hi is a hexagon ~ B. The adjacency relation of the Clar graph (which will 
be given the symbol ~b (Benzenoid system) is then obtained from the elements 
ff~. The procedure may seem too tedious as to require a display of all Kekul6 
structures of the benzenoid hydrocarbon. This is not so: consider, e.g. the system 
C3,4 (we adopt almost similar nomenclature as in [8]. Using the formula given 
in [8], its Kekul6 content, K(C3,4) = 105 1. One of these Kekul6 structures is 
shown below: 

It is immediate the ~u =0  for the following values of (i,j): (1, 7), (1, 8), (1, 10), 
(1, 11), (2, 5), (2, 8), (2, 10), (2, 11), (5, 7) and (5, 8). Consideration of symmetry, 
i.e. h~ =-- h 4 ~ hlo  ~ h13 etc. generates other obvious vanishing terms in ~(C3,4). Clar 
"coloring" [15]: Clar structures might be represented by the corresponding Clar 
graph colored (arbitrarily) in the following way: black vertices corresponding to 
hexagons containing circles (i.e. aromatic sextets) and white vertices for empty 
hexagons. The black and white vertices must be arranged such that no two black 
vertices are adjacent and that every white vertex must be adjacent to at least one 
black vertex. The number of such "Clar colorings" is the number of Clar structures 
(= Clar bases) of the hydrocarbon, denoted by ~ (benzenoid system). For chrysene, 
e.g. we have the following facts: 

~b (chrysene) = P4; a path on 4 vertices, 

K (chrysene) = 8 

(chrysene) = 3. 

l The number of its Clar bases in only 29 (see Sect. 3.3) 
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The three Clar structures correspond to the following three Clar colorings: 
0- -0 - -0 - -0 ;  0 - -0 - -0 - -0 ;  0 - - 0 - - 0 - - 0  

Clar polynomial 

It is convenient for the enumeration of Clar structures (=Clar  bases) to define 
a Clar polynomial as follows. Let ~b(B) be the Clar graph of a benzenoid system 
B. Let V(r) be the number of  Clar structures in which there are r black vertices, 
where r - 1  and let m be the maximal value of r. Then a Clar polynomial 
~:(~b(B); x), might be given by Eq. (2), viz., 

~((~)(B)'~ x)=Zrrn= 1 V(r )x  r. (2) 

Naturally, the Clar count, ~'(B), would be defined as: 

~'(B) = ~:(~b(B); 1). (3) 

Equation (3) must take into account super-rings [8, 9] (see Sect. 3.3). 

3. Binomial properties of  Clar structures 

Four types of  pericondensed systems are dealt with in this paper as well as a 
catacondensed system in which the hexagons are annelated in a zig-zag manner. 
(See Chart) Kekul6 counts and sextet polynomials of these pericondensed systems 
are studied elsewhere [8]. 
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3.1. Nonbranched cata-condensed all-benzenoid systems 

If benzene rings are annelated in a zig-zag way an all-benzenoid hydrocarbon 
results [15]. Lower members of this series are phenanthrene, chrysene, picene 
and fulminene; the latter contains six hexagons. Chemical and spectral properties 
of this system are studied and outlined in Clar's book [5]. Certain pericondensed 
systems contain this system as subunits and that is why it is included here (of., 
Ca,, system). The main combinatorial properties of this system which will be 
used later are the following: (other properties may be found elsewhere [16]). 

3.1.1. The populations of Clar structures in periodic families of this system recur as 
follows: 

~(Aj) + ~ ( A j + l )  = ~'(Aj+3), (4) 

where ~(Ai) is the number of Clar structures (=Clar bases [9]) of Ai, a non- 
branched zig-zag type benzenoid hydrocarbon containing i rings. Equation (4) 
is to be compared with the Fibonacci recursion [17], viz., 

Fj + Fj+, = Fj+2, (5) 

where P~ is the ith Fibonacci number when Fo =/:1 = 1. For this system one recalls 
that [18]. 

Fj = K(Aj) (6) 

and whence 

K(Aj) + K(Aj+1) = K(Aj+2) (7) 

where K (Ai) is the Kekul6 structure count of Ai. The real value of the VB method 
of Herndon and Hosoya [9] is now already clear. By comparing Eqs. (4) and 
(7) it is obvious that populations of Kekul6 structures grow "much faster" than  
the corresponding populations of Clar structures. Because of Eqs. (5) and (6), 
Eq. (4) generates what might be called a "delayed" Fibonacci sequence. Chemical 
interpretations of Fibonacci-like progressions are known [18, 19]. 

3.1.2. The number of terms, r, in Clar polynomials. We let r be the number of 
rings in At, then r, the number of terms in ~(Ar; x)=- ~(r x) is given by: 

r=-~+l (8) 
where j is the integral value satisfying the equation 

r=3j+a  (9) 

where 

f{0,2,4} for even value o f r  

a = ~ [{-3 ,  -1,  1} for odd values of r. 
(10) 

Here, the notation {k, l, m} means either k, l or m which leads to an integral 
value of j .  As an illustration: for As we have 8 = 3 j+  a where a = {0, 2, 4}. Only 
a = 2 leads to an integral value of j (=2) ,  and thus r (As)= �89 2+ 1 = 2. Actually 
~(A8; x) = 4X3+ 5x 4. Equation (8) will be used in the next property, viz., 
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3.1.3. Clarpolynomials of Ai types. The Clar graph of an Ai is simply a path, Pi. 
The following explicit expressions might be induced: (Throughout Eqs. (11-14) 
n - 0 ,  1 ,2 , . . . )  

. . .  + ( 2 n - r +  
+ \ 2 z - 1  2) x2n-z+l (11) 

~:(~b (A4.+2); x)=(2nl2)X2"+a+(2n;1)x2"+(2;)x2"-I 

(2n-'r+3~x2"-'+2 (12) + 
" " + \  2~--1 ] 

~( c~ ( A4n+1); x ) = ( 2nO2)X2"+l + ( 2n;1)x2" + ( 2;)x2n-1 

�9 ( 1 3 )  
+ ' "  \ 2~--1 / 

,(~a(a4.~+3); x)=(2nO3)X2n+z +(2n; 2)x2n+l +(2n;1)x2" 

(2n-~'+4)x2"-'+3 (14) 
+ ' ' "  + \  2 z - 1  ] 

Evidently, Eqs. (11-14) lead to analytic expressions for the number of Clar 
structures when x = 1. These results will be used in system C3,, (Sect. 3.3). 

3.2. The pyrene system 
We consider a pyrene system composed of n units, II, (see charrt). Obviously, 
H,  contains 3n + 1 rings. A very little effort shows that Clar polynomials are 
simply given by: 

~(6(II.);  x) = x"+l+ (3" - 1)x "+2 (15) 

and thus the Clar count is trivially: 

~(II.) =3" (16) 

Equation (16) is to be compared with Gutman's formula [20] 

K(II .)  =2.3" (17) 

3.3. The C3,, system 
The Kekul6 counts of this system are considered in details in the recent work of 
Ohkami and Hosoya [8]. 
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3.3.1. Clar graph of C3,,; ~b(C3,,). The ~b graph of this system is composed of 
three rows of vertices derived from the skeletal graph [21] of the corresponding 
hydrocarbon. The vertices of both the upper and lower rows form complete graph 
[22] (i.e. every vertex is connected to all other vertices of the row). The vertices 
of the middle row has the connectivity of a path in relation to one another. I.e. 
is identical to ~b(A,+a). Thus t~(C3,4) is shown below. 

Q 
We might "losely" express q~(C3,,) as 4)(K, UA,+I UK,) where K,  is a complete 
graph on n vertices. 

3.3.2. Clar counts and Clar polynomials. Clar polynomials of the C3,n system 
might conveniently be constructed if divided into three parts, viz., 

(1) Black colors assigned to vertices chosen from all three rows. We shall call 
this part of the polynomial r x). 

(2) Black colors assigned to vertices chosen from middle row only. This part of 
the polynomial will be called r V(2); x). We now recall that the vertices of the 
middle row of a ~b(C3,,) are attached to one another like the vertices of a path, 
i.e. form among themselves an A,+I system. However out of the total of r 
only two "colors" form maximal independent sets with the rest of the vertices viz., 

~(V(2); x ) =  2x (n odd) (18) 

~(V(2); x) =xn/2-I-X n/2+1 (n even) (19) 

(3) Contribution from super-rings [8, 9] (super-sextets) 

= ~(S; x) = (n - 1)x. 

Thus for the B3,, system we have 

s x) -= ~:(B3,,; x) = ~:( V(123); x) + ~:( V(2); x) + s x) (21) 

3.3.3. Computation of ~(V(123); x). This is not a trivial term to compute. A 
systematic method involves the construction of a "multiplication table or matrix". 
Thus we denote the vertices of the first row in ~b(C3,,) by (Vii, V~2,..., V1.) and 
those of its third row by (V31 , V3z,.. . ,  V3,), We define a color integral, say, 
(V~jl V3k), where j, k = [1, n], to give all Clar colorings which result when vertex 
V1j and vertex V3k are assigned black colors. Obviously, the resulting (Clar) 
colorings will come from the "path moiety" (from second row) which is not 
adjacent to Vlj or to V3k. E.g., in C3,7(VllIV3t)=~(A6). (See Fig. 1). Thus the 
contribution of (Vlll V31) to ~( V(123); x) will simply be X2~(~b(A6)). The factor 
of x 2 comes from assigning black colors to VH and to Val. Thus we realize this 
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Fig. 1. All five Clar colors of C3, 7 resulting 
when black colors are assigned to V11 and 
V31: computation of ( vnl V31). Only skeletal 
graphs are shown. The total number of colors 
of this perifusene is 164 = the number of its 
Clar structures (see Appendix 1 and Table 1) 

part  o f  the Clar  polynomia l  to be funct ion o f  Clar polynomials  o f  zig-zag 
polyacenes.  In  general one might  write: 

( Vlj [ V3k ) -~- X2r Vljl V3kY; X). (22) 

Where the pr imed "bra-ke t"  indicates that part  o f  the path (which may be 
disconnected)  not  connected with the subgraph { VuUVag }. Because o f  the par- 
ticular topology  of  this system all (VI~[ V3k)"S are paths. (These might be called 
here, "complemen ta ry"  paths).  Thus we may  write 

r =x2 E r 
j,k~c~,o (23) 

j , k=[1 ,  n]. 

where the summat ion  is taken over all j and k for  both  j = k and j < k. In the 
appendix  the mult ipl ication table o f  a lower member  o f  C3,, is given. 

Table 1 lists Clar polynomials  o f  a few C3,n members  in the units o f  zig-zag 
polyacenes.  Polynomials  o f  the latter are listed in the appendix.  

3.4. The B3,~ system 

3.4.1. Clar graph ofB3,n; ch(B3,n). The skeletal g raph  [21] of  B3,n is composed  of  
three rows of  vertices. I f  we keep the arrangement  o f  hexagons o f  a B3, n as shown 
in chart, the three rows o f  vertices o f  its skeletal graph are numbered  from left 
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Table 1. Clar polynomials of the first lower members of C3. ~ type in the units of the zig-zag polyacene 
polynomials [23]. Throughout the following A k = ~(Ak; x), Appendix 2; C3, k = ((C3,k; x). Parts of 
the polynomials in parentheses are values of ~( V(2); x) while parts in braces represent contributions 
from super-rings; ~:(S, x), see Eq. (21) 

C3,2 (coronene) 
2X z + 2A z + (X + X 2) + {X}; ~'((?3,2) = 7 

C3,3 
2X 2 + 4X2A1 d- 2X2A2 -t- XZAIAI + (2X 2) + {2X}; ~'(C3,3) = 15 

C3,4 
6X2A~ + 4XZA2 + 2X2A3 + 2XZAIA 2 + 2XZA1A2 + (X 3 + X 2) + {3X}; r(c3.4 ) = 29 

(?3,5 
6X2A2 + 4X2A3 + 2X2A4 + 6X2A1A1 + 4X2A1A2 + 2X2AIA3 

+ XEA2A2A2 + (2X 3) + {4X}; ~(C3,5) = 54 

C3,6 
6X2A3 + 4X2A4 + 2XEAs + 12XEA1A2 + 4X2A1A3 + 2X2A1A4 

+ 2X2AlA1A 1 + 2X2AEA2 + 2X2A2A3 + (X 4 "~- X 3 ) -[- { 5 X } ;  

~'(C3,6) = 95 

C3,7 
6X2A4 + 4X2As + 2X2A6 + 12X2AIA3 + 4X2A1A4 + 2XZA1A5 

+ 6X2A2A2 + 4X2A2A3 + 2X2A2A4 + 6X2AIA~ A 2 + XZA3A3 + (2X 4) + {6X}; 
~'(C3,7) = 164. 

to right as  f o l l o w s  Vll, V 1 2 , . . .  , Vln; V21, V22, . . . ,  g2n; V31, V32, �9 �9 �9 , g 3 n - T o  f o r m  

the  ~ g raph  every ver tex  in each  row is a t t ached  to all o ther  vert ices in the same 
row so tha t  every row becomes  a comple te  graph.  In  add i t i on  every ver tex  in the 
second  row is connec ted  to all  o ther  vert ices to its left. This means  that  v2, is 

ad j acen t  to all vert ices in ~(B3,n) , i.e. {v~ ,}={Q} ( = t h e  empty  set),  where,  as 
before ,  { V~} is, in genera l ,  the  set of  vert ices not connec ted  with Vj. S imi lar ly  

{V~, ,_ I}={VlnUV3,} .  We can write ana logous  equat ions  such as {V~xn_2)}= 

{ VInUVI,n_ 1 UV3nUV3,n_I} and  so on. 

3.4.2. Clar polynomials o f  B3,,. In  this case all C la r  color ings  except  one  involve 
b l ack  vert ices chosen  f rom all  three  rows. Because VZn is a t t ached  to all  o ther  
vert ices,  a b l ack  V2, leaves the  rest o f  the vert ices white.  There  is no super - r ing  
[8, 9] correct ion.  Using  the t echn ique  o f  mul t ip l i ca t ion  tab le  exp la ined  in the 
previous  case one  can express  the requi red  Cla r  p o l y n o m i a l  as fol lows 

~:(q5 (B3,n); x)  =-- ~(B3,,; x)  

= x  2 ( 2 ( n - j ) + l ) ~ : ( L j _ l ;  x)  + x ,  
j= 

(24) 

where  ~:(Lk; x)  = Cla r  p o l y n o m i a l  o f  a l inear  acene conta in ing  k hexagons  ( =  kx) 
and  sC(Lo; x ) =  1. The fac tor  of  x comes  f rom the max ima l  i n d e p e n d e n t  set 
con ta in ing  a b lack  V2n. In the  a p p e n d i x  a mul t ip l i ca t ion  table  is given for  B3, 6. 
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3.5. The parallelogram system P,,m 

We consider a parallelogram of mn hexagons arranged in n rows and m columns. 
This is identical to Ohkami-Hosoya [8] Pro,. (Actually, if the latter is reflected 
by a mirror at the bottom our system results: We prefer to call it P.,m in keeping 
with the matrix notation of listing the number of rows followed by the number 
of columns). 

3.5.1. The Clargraph ofP,,m, qb(P,,r~). This is a rather involved graph. To illustrate 
the pattern of this family we consider ~b(P3,3) shown below. 

11 12 13 

~o~_.___,,c ~o33 31 32 
~,(P3,3) 

Higher members generate much more complicated relations. A convenient method 
to envisage the structures of these graphs is to list what is called here "complement 
subgraphs". Thus {v~.} is such a subgraph of vertex v o. It is defined to be the 
subgraph of vertices not adjacent (i.e., not connected) with v o. For ~b(P3,3). We 
have the following relations: 

22 23 

{vh} = ~ - ~  = P~,~ 
32 33 

Similarly; 

023  

{V~2} = ~33 = P2,1; 

{ V~I} = o----o = P1 2; 
32 33 

{ vh}  = { vh}  = {0}. 

Analogously for (];(/;3,4) o n e  might write: 

{ v h } =  P~,~; {vh}  = P~,~; {vh}  :- P~.,; 

{ v h }  = P,,~; { vh}  = { vh}  = {~}. 
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3.5.2. Clar counts of P,,m. With some effort one can induce the following property 
of the number of clar structures of a P,,m in terms of smaller (complement) 
subgraphs of the vertices of the first row and those of the first column of ~b(P,,m) 

~(Pn, m) = ~(Pn-l,m-a) U~(Pn-l,m-2) U. �9 �9 U 
x r(p,,_,.,) U~'(Q) U~'(P,,_2..,_,) U 

~'(P.-3.,,,-,) U . . -  u~r(P,..,_,) Uff(Q). (25) 

where if(Q) = 1. Evidently Pl,i = Pj,1 = Lj = a linear acene on j  hexagons. Of course 
~(Pk)  = k. 

3.5.3. Recursive relations of Clar polynomials. The general recursion is given by 

s~(6 (P.,,,,); x ) -  

~(P,,m;X) =2x+x ~= ~(I~n-l,i ,X) "~- 2 ~(Pj, m-,'~ X) �9 (26)  
i 1 j = l  

Equation (26) is a result of property (25). 

Explicit expressions of some of the lower members are given below. 

se(~b (P~,,,,); x) = ( 1 ) x  (27) 

, ( t~ (P2,m), X)=(2)X2+2X (28) 

~( ~( P3,m)', X)-=( 3)x3-t-3(m-1)x2 + 2x (29) 

'(~)(P4,rn)'~X):(4)X4Ji-(:)(m;1)X3-~-3mx2I-2X (30)  

+3(m+ l)x2+2x. (31) 

There are no super-rings [8, 9] in this system. Such expressions are to be compared 
with those df Ohkami and Hosoya [8] for the corresponding Kekul6 counts. 

The above results (Eqs. 4-31) as well as the method of "multiplication table" 
are certainly useful for the enumeration and display (respectively) of Clar 
structures. This is of value from several aspects, viz. 

(1) The work of Herndon and Hosoya [9]: Clar structures form the bases of their 
effective VB Hamiltonian. 

(2) The work of Ohkami and Hosoya [8]: Clar polynomials are to be compared 
with sextet polynomials, i.e., ~(B) with K(B). 

(3) The work of Aida and Hosoya [21]: Clar structures may provide a novel 
VB-benzene character which may be of value in the analysis of mode of distribu- 
tion of pi-electrons in the individual hexagons of a polycyclic aromatic hydrocar- 
bon. Our work is in progress in this direction. 
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Appendix 1 

M u l t i p l i c a t i o n  t ab l e  o f  (?3, 7: c o m p u t a t i o n  o f  ~:(C3,7( V(123);  x) .  T a b l e  (ma t r ix )  e l emen t s  are  in un i t s  

o f  ~(Ak;  x) =- A k. 

V31 A6 A5 A4 AIA3 A22 AxA3 A4 

V32 AlAs A1A 4 A1A3 A1A1A2 AIA1A2 AIA3 

V33 A2A4 A2A 3 A2A2 A2AIA 1 A2A2 

V34 A3A 3 AsA2 AsAt AsA 4 

V35 A4A2 A4A1 A4 

1:36 AsA1 A5 

V37 A6 

W h e n  ( (Ak) 'S  a re  u s e d  ( f r o m  A p p e n d i x  2) the  a b o v e  t ab l e  y ie lds  156 m a x i m a l  i n d e p e n d e n t  sets. The  

to ta l  n u m b e r  o f  ~'(C3,7) = 1 5 6 + 2 + 6  = 164 (cf. Eq.  21). 

Appendix 2 

C l a r  p o l y n o m i a l s  o f  the  l o w e r  m e m b e r s  o f  the  z ig-zag  p o l y a c e n e s .  T h r o u g h o u t ,  the  s y m b o l  Ak will  

be  u sed  to i n d i c a t e  ~(Ak; x). 

At=X 
A 2 = 2X 
A3 = X2 + X 
A 4 = 3 X  2 
A 5 = X 3 + 3 X  2 

A 6 = 4 X  3 + X 2 

m 7 = X 4 + 6 X  3 

A 8 = 5 X 4 + 4 X  3 
A 9 = X 5 + 1 0 X  4 + X 3 

Alo  = 6 X  5 + IOX 4 

A l l  = X 6 +  1 5 X 5 + 5 X  4 

A12 = 7 X  6 + 2 0 X  5 + X 4 

A23 ----- X 7  + 2 1 X 6 +  1 5 X  5 

A14 = 8 X  7 + 3 5 X  6 + 6 X  5 

Al5 = xs  + 28X7 + 35 X6 + X5 
A16 = 9 X  8 + 5 6 X  7 + 2 1 X  6 

At7 = X9+36XS+70XT+TX 6 
ml8 = 1 0 X  9 + 8 4 X  s + 5 6 X  7 + X 6 

m19 = X l O + 4 5 X 9 +  1 2 6 X S + 2 8 X  7 

A2o = l l X l ~  1 2 0 X 9 +  1 2 6 X s + 8 X  7 

Appendix 3 

M u l t i p l i c a t i o n  t ab l e  o f  B3, 6 
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11 12 13 14 15 16 

31 0 Q Z ~ Z 0 
32 L1 L1 Lt Ll LI 
33 L2 L2 L2 L2 
34 L 3 L 3 L 3 
53 L4 L4 
36 L~ 

Q: the empty set 
Lk: Clar polynomial of a linear polyacene containing k hexagons 

References 

1. Herndon WC (1973) J Am Chem Soc 95:2404; (1980) 102:1538; Herndon WC, Ellzey Jr ML; 
(1974), J Am Chem Soc 96:6631 and numerous subsequent publications 

2. Randi6 M (1976) Chem Phys Letters 38:68; (1977) J Am Chem Soc 99:444; (1977) Tetrahedron 
33:1906; (1977) Mol Phys 34:849 

3. Gomes JAFN (1979) Rev Port Quire 21:82; (1980) Croat Chem Acta 53:561; (1980) Theor Chim 
Acta 59:333 

4. Hosoya H, Yamaguchi T (1975) Tetrahedron Letters 4659 
5. Clar E (1972) The aromatic sextet. Wiley, New York 
6. See, e.g., Gutman (1982) Bull Soe Chim Beograd 47:464 
7. Ohkami N, Motoyama A, Yamaguchi T, Hosoya H, Gutman I (1981) Tetrahedron 37:1113 
8. Ohkami N, Hosoya H (1983) Theor Chim Acta 64:153 
9. Herndon WC, Hosoya H (1984) Tetrahedron 40:3987 

10. Dewar MJS, De Llano C (1969) J Am Chem Soc 91:789 
11. A good source may be found in: Trinajsti6 N (1983) Chemical graph theory, vol II, chapt 10. 

The Chemical Rubber Company Press, Boca Raton 
12. A method has been developed recently for the calculation of the number of those Kekule structures 

of a benzenoid hydrocarbon which are represented by its Clar formulas: Gutman I, Obenland 
S, Schmidt W (1985) Match 17:75 

13. Gutman I (1982) Z Naturforsch 37a:69; Gutman I, El-Basil S (1984) Z Naturforsch 39a:276 
14. Christofides N (1975) Graph theory. An algorithmic approach, chapt 3. Academic Press, New York 
15. See, e.g., El-Basil S (1983) Bull Chem Soc Japan 56:3152 
16. El-Basil S: Binomial properties of Clar structures. Submitted for publication in Discrete Applied 

Mathematics 
17. Cohen DA (1978) Basic techniques of combinatorial theory. Wiley, New York 
18. Balaban AT, Tomescu I (1984) Croat Chem Acta '57:391 
19. Hosoya H (1973) Fibonacci Quart 11:255; El-Basil S (1984) Theor Chim Acta 65:191; Gutman 

I, El-Basil S (1985) Chem Phys Letters 115:416, Gutman I, El-Basil S; Fibonacci graphs. 
Unpublished results 

20. Gutman I (1985) Match 17:3 
21. The term skeletal graph is used in: Aida M, Hosoya H (1980) Tetrahedron 36:1321 
22. See, e.g., Harary F (1972) Graph theory Addison-Wesely, Reading Mass 
23. Randi6 seems to be the first who expressed a counting polynomial of a graph in terms of those 

of much simpler graphs: Randi6 M, (1983) Theor Chim Acta 62:485 

This work is of value in the graph-recognition problem. 


